Post Mortem Changes in Fish

Dr. B. K. Khuntia
Associate Professor,
College of Fisheries (OUAT),
Rangailunda, Berhampure - 760 007
Orissa

2009
DAYA PUBLISHING HOUSE
Delhi - 110 035
To
My Wife
SASMITA
Acknowledgement

I express my heartfelt thanks to Dr. P.C. Thomas, Ex-Director, College of Fisheries (OUAT), Rangailunda, for his constant encouragement, critical comments and constructive suggestions about this book, which inspired me to get it published. I am extremely thankful to my colleagues at College of Fisheries (OUAT), Rangailunda who have extended their kind cooperation during writing of this book. Their critical suggestions have enabled me to upgrade the quality of the book.

I am indebted to my father Sj. Jayakrishna Khuntia and mother Smt. Taapoi Khuntia whose generous blessings have enabled me to write this book. I owe a lot to my wife Sasmita, for her constant encouragement and deliberate support in bringing the book to the present form. I am thankful to my daughters Nilima and Banani for their patience and cooperation during writing of the book.

I am greatly obliged to Dr. S. Ayyappan, Deputy Director General (Fisheries), Indian Council of Agricultural Research for kindly writing a foreword to the book. I also extend my thanks to Daya Publishing House, New Delhi for publishing the book in such an excellent manner.

B. K. Khuntia
Foreword

The demand for fish is increasing day-by-day due to the rapid growth of population and steep rise in the consumers' demand for healthy foods. At present, fish is not only treated as a cheap and easily available source of animal protein, it has also acquired an esteemed position as a rich source of $\omega-3$ fatty acids, the panacea for cardiovascular diseases. It has surpassed many food items to become one of the most popular healthy foods all over the world. At the same time the consumer is becoming more and more conscious about the quality of fish and fishery products available in the market. On the other hand, the production of fish has reached an almost stagnation in recent years. This invites for the effective utilisation of the produce without allowing a bit of it to be wasted. As fish is a highly perishable food commodity, it needs greater care than most of the other food materials.

Several changes occur in the fish body after death. These post mortem changes gradually lead to the loss of quality ultimately resulting in its spoilage. A thorough understanding of these post mortem changes is required to meticulously manipulate them so as to retain its quality over a prolonged period of time. This will not only help in providing the consumer with good quality fish and fishery products, it will also reduce the wastage of fish resulting from its spoilage. This book entitled “Post Mortem Changes in Fish” authored by Dr. B. K. Khuntia, Associate Professor, College of Fisheries, Orissa University of Agriculture and Technology, contains an in-depth description of these post mortem changes such as hyperaemia, rigor mortis, autolysis, microbial putrefaction, lipid autoxidation and discoloration. The intricate mechanisms of these changes have been described in a lucid manner with several illustrations.

I congratulate Dr. Khuntia for his untiring efforts in preparing such an exhaustive and illustrated book. I am sure this book will be an invaluable asset for the students, teachers, researchers, professionals, traders, fish processing technologists and all those involved in fish processing.

Dr. S. Ayyappan
Deputy Director General (Fisheries)
Indian Council of Agricultural Research
New Delhi
Preface

Fish, as a food commodity, has been associated with man since time immemorial. It is a nutritionally rich, cheap source of animal protein. At present, it is gaining additional importance among the affluent people due to their increasing awareness about its unique nutritional properties not found in any other food commodity. Although advancement in technology of fishing and aquaculture has resulted in increasing the production of fish, its effective utilisation has not yet met with the expected success, particularly in the tropical developing countries. A large portion of the total world fish catch is either discarded or sold at a low price due to the fast deterioration of its quality. The problem is more precarious in the tropical countries where the high ambient temperature further enhances the rate of quality deterioration.

Fish is a highly perishable food commodity as its quality starts deteriorating immediately after death. The lion’s share of the total world fish catch is consumed fresh in which the post mortem changes have tremendous influence on quality. Moreover, the quality of processed fishery products depends largely on the quality of the raw material which in turn depends on the post mortem changes. As no processing method can improve the quality of fish, it is imperative to take utmost care to minimise the post mortem deteriorative processes occurring in the fish body. This necessitates a thorough understanding of the processes, which occur in the fish body after death so that the factors influencing these processes can be manipulated to minimise the deteriorative processes. The book has been written to provide some basic knowledge about the post mortem changes which occur in fish and the ways they can be controlled desirably.

The book elaborates various aspects of the post mortem changes in fish through a number of illustrations. There are seven Chapters in the book, each followed by a summary. In addition, there are nine Text Boxes, which provide further information related to the post mortem changes. The book may be introduced as a textbook at postgraduate level for students specialising in fish processing. For undergraduate students of fisheries, the summary at the end of each chapter is quite adequate to brief them the fundamentals of changes in fish body after death. This will open the window for further understanding of other subjects in fish processing. The book shall be useful to students, teachers, researchers, extension personnel and all associated with fish processing. The author cordially invites critical comments and suggestions for further improvement in the quality of the book in future.

B. K. Khuntia

E-mail: basantak@yahoo.com
Contents

Acknowledgement vii
Foreword ix
Preface xi
List of Figures xv
List of Tables xix
List of Text Boxes xxi

1. Introduction 1
 I. What are Post Mortem Changes ? 1
 II. Summary 2

2. Hyperaemia 3
 I. What is Hyperaemia ? 3
 II. Summary 4

3. Rigor Mortis 5
 I. What is Rigor Mortis ? 5
 II. Stages of Rigor Mortis 6
 III. Biochemistry of Rigor Mortis 6
 IV. Measurement of Rigor Mortis 22
 V. Factors Influencing Rigor Mortis 23
 VI. Changes During Rigor Mortis 26
 VII. Spread of Rigor Mortis in Fish Body 27
 VIII. Duration of Rigor Mortis 27
 IX. Influence of Rigor Mortis on Quality of Fish 27
 X. Manipulation of Rigor Mortis 28
 XI. Summary 29

4. Autolysis 34
 I. What is Autolysis ? 34
 II. Types of Enzymes Involved in Autolysis 35
III. Autolytic Hydrolysis 38
IV. Effects of Autolysis 39
V. Measurement of Autolysis 42
VI. Control of Autolysis 43
VII. Summary 44

5. Microbial Putrefaction 49
 I. What is Microbial Putrefaction ? 49
 II. Importance of Microbes in Fish Processing 49
 III. Types of Microbes in Fish 50
 IV. Species of Microbes Associated with Spoilage of Fish 53
 V. Spread of Microbes in the Body of Dead Fish 53
 VI. Mechanism of Microbial Putrefaction 56
 VII. Effects of Microbial Putrefaction 68
 VIII. Control of Microbial Putrefaction 70
 IX. Summary 74

6. Lipid Oxidation (Autoxidation) 78
 I. What is Lipid Oxidation (Autoxidation) ? 78
 II. Mechanisms of Lipid Oxidation 79
 III. Factors Influencing Lipid Autoxidation 88
 IV. Effects of Lipid Autoxidation 96
 V. Control of Autoxidation 97
 VI. Summary 99

7. Discolouration 105
 I. Black Spot Formation in Shrimp (Melanosis) 105
 II. Brown Discolouration of Red Meat of Fish 109
 III. Red/Brown Discolouration of White Fish Fillets 112
 IV. Summary 112

Glossary 115
Bibliography 123
Index 125
List of Figures

Figure 1: Secretion of slime to body surface during hyperaemia
Figure 2: Stages of rigor mortis
Figure 3: Break down of tissue carbohydrates in dead fish (left) and in living fish (right)
Figure 4: Structure of ATP (a nucleotide)
Figure 5: Post mortem degradation of ATP
Figure 6: Hydrolysis of phosphocreatine and synthesis of ATP
Figure 7: Ion pumps on the membranes
Figure 8: Muscle cell before death
Figure 9: Muscle cell after death.
Figure 10: Structure of fish muscle
Figure 11: Formation of actin-myosin cross-bridge (Section view)
Figure 12: Movement of actin filament by myosin heads
Figure 13: Sliding of filaments during muscle contraction
Figure 14: Measurement of rigor mortis using the instrument developed by Messtorff (1954)
Figure 15: Activities of digestive enzymes in living fish
Figure 16: Break down of proteins during proteolysis
Figure 17: Break down of fats and phospholipids during lipolysis
Figure 18: Break down of nucleic acids during nucleolysis
Figure 19: Penetration of bacteria into fish muscle after death
Figure 20: Natural microbial flora of fish
Figure 21: Degradation of TMAO in fish tissues after death
Figure 22: Different routes of TMAO degradation
Figure 23: The simple monoamines produced by microbial decomposition of TMAO
Figure 24: TMAO degradation in gadoid fish leading to protein denaturation
Figure 25: Microbial decomposition of urea in cartilaginous fishes
Figure 26: Deamination of amino acids by microbes in different ways
Figure 27: Decarboxylation of amino acids to produce biogenic amines
Figure 28: Deamination and decarboxylation of amino acids by microbes
Figure 29: Microbial decarboxylation of histidine
Figure 30: Pathway of histamine poisoning
Figure 31: Histidine degradation by tissue histidine deaminase
Figure 32: Histidine degradation by tissue urocanase
Figure 33: Histidine degradation by tissue histidine hydrolase
Figure 34: Microbial decarboxylation of phenylalanine
Figure 35: Microbial decarboxylation of lysine
Figure 36: Microbial decarboxylation of arginine
Figure 37: Microbial decarboxylation of ornithine
Figure 38: Microbial decarboxylation of tyrosine to cresol
Figure 39: Microbial degradation of tyrosine to phenol
Figure 40: Microbial degradation of tryptophan to indole
Figure 41: Microbial degradation of tryptophan to skatole
Figure 42: Disulphide bridge formation with the help of cysteine
Figure 43: Microbial degradation of cysteine
Figure 44: Microbial degradation of methionine
Figure 45: Hydrolysis of proteins by bacterial enzymes into amino acids and their subsequent degradation
Figure 46: Rancification of fats by microbes
Figure 47: Microbial decomposition of nucleic acids
Figure 48: Increase in pH of fish tissue due to microbial putrefaction
Figure 49: Fermentation of sugar
Figure 50: Microbial fermentation of fish
Figure 51: Structure of a fatty acid
Figure 52: Hydrolytic rancidity
Figure 53: Refining process of oil
Figure 54: Linolenic acid
Figure 55: Polymerisation of lipids
Figure 56: Initiation of lipid autoxidation
Figure 57: Resonance hybrid of oleic acid when H* removed from C₈
Figure 58: Resonance hybrid of oleic acid when H* removed from C₁₁
Figure 59: Propagation step in lipid autoxidation
Figure 60: Chain reaction in the propagation step of lipid autoxidation
Figure 61: Change in the rate of autoxidation with time.
Figure 62: The four hydroperoxide isomers of lipid containing oleic acid at position 1
Figure 63: Cis – Trans isomers of lipid containing oleic acid at position 1
Figure 64: Formation of lipid peroxide (Old concept)
Figure 65: Products of lipid autoxidation
Figure 66: Decomposition of lipid hydroperoxide
Figure 67: Decomposition of oleate hydroperoxide
Figure 68: Decomposition of alkoxy free radical to aldehyde
Figure 69: Decomposition of alkoxy free radical of oleate to two different aldehydes
Figure 70: Decomposition of alkoxy free radical to alcohol
Figure 71: Decomposition of alkoxy free radical to ketone
Figure 72: Molecular structure of important antioxidants
Figure 73: Mechanism of black spot formation
Figure 74: Post mortem formation of melanin in shrimp
Figure 75: Structure of myoglobin (globin + heme)
Figure 76: Different forms of myoglobin
Figure 77: Chemistry of brown discolouration of red meat of tuna
Figure 78: Colour fixation by curing
Figure 79: Brown discolouration of red meat and its control (summary)
List of Tables

Table 1: Influence of manner of death on duration of rigor mortis
Table 2: Change in the pH of fish tissue after death
Table 3: Duration of rigor mortis in fish
Table 4: Natural microbial flora in different parts of fish body
Table 5: Natural microbial flora of fishes of different habitats
Table 6: Microbes associated with spoilage of fresh fish
Table 7: Microbes associated with histamine production in fish
Table 8: Regulatory limits of histamine in fish and fishery products in different countries
Table 9: Products of microbial putrefaction of fish
List of Text Boxes

Text box 1: Hypoxanthine and K value
Text box 2: Pattern of ATP utilisation in live fish
Text box 3: Contraction and relaxation of muscle in live fish
Text box 4: Microorganisms and life on the earth
Text box 5: Histamine poisoning
Text box 6: Non-microbial degradation of histidine
Text box 7: Lipid deterioration
Text box 8: Antioxidants
Text box 9: Synergists
I. What are Post Mortem Changes?

Fish has been a lucrative food item since ancient times. Besides its use as food, it has gained additional importance in recent years because of its agricultural, industrial, medicinal and ornamental uses. In most cases, its ultimate utilisation needs its ‘carcass’ or the dead body. For its utilisation, fish is harvested from its aquatic habitat, which leads to its death. After death several changes take place in its body. These changes are collectively called ‘post mortem changes’ (post: after; mortem: death). They can be grouped into the following six steps mentioned in the order of their occurrence after death.

1. Hyperaemia
 In this step, the skin of fish releases large quantity of mucus to the body surface.

2. Rigor Mortis
 During rigor mortis (rigor: stiffening; mortis: death) the body of fish stiffens for a certain length of time after death.

3. Autolysis
 In autolysis (auto: self; lysis: break down) the complex tissue components of fish body such as proteins, fats (lipids) and nucleic acids are hydrolysed or broken down into their simple building blocks by the enzymes present in the fish body (endogenous enzymes). Proteins are hydrolysed to amino acids; fats to fatty acids and glycerol and nucleic acids to nucleotides as given below. Due to hydrolysis of proteins, which are the important structural component of fish tissue, autolysis results in the softening of fish tissue. The end products of hydrolysis become a nutrient-rich medium for the growth of microbes.

 Proteins \rightarrow Amino acids
 Fats \rightarrow Fatty acids + glycerol
 Nucleic acids (RNA & DNA) \rightarrow Nucleotides

4. Microbial Putrefaction or Decomposition
 In this step, the tissue components of fish, intact or hydrolysed through autolysis, are decomposed by microorganisms into off-odour, off-flavour substances accumulation of which distracts the consumers and thereby results in the spoilage of fish.