Manual of Soil, Plant and Water Analysis

Dr. Tahir Ali
Associate Professor,
Division of Soil Science,
SKUAST-K, Shalimar

Mr. Sumati Narayan
Assistant Professor,
Division of Olericulture,
SKUAST-K, Shalimar

2009
DAYA PUBLISHING HOUSE
Delhi - 110 035
Forword

The most valuable part of the mother earth is soil which as a resource base for life on the planet. Thus, we have to maintain this important natural resource for our own survival. For this, the deficits generated on various accounts have to be made up. This is only possible when we know about the real situation prevailing at a point of time. Soil analysis come into picture here. I am happy that Dr. Tahir Ali and Shri Sumati Narayan have endeavoured in this direction by authoring the book entitled “Manual of Soil, Plant and Water Analysis”. The book has been written in a lucid and self explanatory manner. I do hope that the book will be quite useful to all concern including students, teachers, researchers and quality control personals.

Prof. Anwar Alam,
Vice-Chancellor,
S.K. University of Agril. Sciences and Technology of Kashmir,
Shalimar–191121 (J&K)
Preface

Soil, plant and water are the major ingredients of Agriculture system. Analysis of soil, plant and irrigation water as natural resources is of utmost importance for conservation strategies. To make things easy for them, the authors have attempted to bring all pertinent information together in the present work. The principal involved in various determinations have been explained and substanciated with modern concepts, giving chemical equations where necessary. The methods are described under five subheads viz., principles, apparatus, reagents, procedure, observations and calculation. The book contains simple and reliable procedure which can be useful to students, teachers, scientist and analysed in the field of applied sciences specially in the field of Soil Science, Agronomy, Horticulture and Environmental Science. Efforts are made to make the publication self explanatory and useful.
Finally, we would like to express our sincere gratitude to all the readers and also request them to send their valuable constructive remarks for the improvement in the next edition will be highly appreciated.

Tahir Ali
Sumati Narayan
Chapter 1: Soil Testing and Fertility Management 1–21
1.1 Definition
1.2 Objectives
1.3 Importance and facilities
1.4 Methods of soil fertility evaluation
 1.4.1 Microbial test for determining soil fertility
 1.4.1.1 Azotobacter plaque test
 1.4.1.2 Aspergillus niger test
 1.4.1.3 Cunninghamella plaque method
 1.4.2 Chemical methods for evaluating soil fertility
 1.4.2.1 Qualitative test
 1.4.2.2 Rapid plant tissue tests
1.4.3 Quantitative test
1.4.4 Vegetative methods
 1.4.4.1 Visual diagnosis of deficiency symptoms
 1.4.4.2 Use of indicator plants

1.5 Phases of soil testing
 1.5.1 Instrument Used
 1.5.2 Sampling procedure
 1.5.3 Dispatch
 1.5.4 Sample preparation
 1.5.5 Analysis
 1.5.5.1 Soil texture
 1.5.5.2 Electrical conductivity
 1.5.5.3 pH
 1.5.5.4 Calcariousness
 1.5.5.5 Organic carbon
 1.5.5.6 Available nitrogen
 1.5.5.7 Available phosphorus
 1.5.5.8 Available potassium
 1.5.5.9 Available secondary nutrients
 1.5.5.10 Available micronutrients
 1.5.5.11 Lime requirement
 1.5.5.12 Gypsum requirement

1.6 Interpretation and fertilizer recommendations
Chapter 2: Methods of Soil Analysis

2.1 Determination of available nutrients

2.1.1 Determination of organic carbon
 2.1.1.1 Titrimetric method
 2.1.1.2 Colorimetric method

2.1.2 Determination of available nitrogen
 2.1.2.1 Alkaline potassium permanganate method
 2.1.2.2 Calcium hydroxide method
 2.1.2.3 Incubation method (Kenny and Bremrer, 1962)
 2.1.2.4 Nitrate-N by pheno Disulphonic acid method
 2.1.2.5 Ammonium–N by colorimetric method

2.1.3 Determination of available phosphorus
 2.1.3.1 Olsen’s method
 2.1.3.2 Bray’s and Kurtz method

2.1.4 Determination of available potassium

2.1.5 Determination of available sulphur
 2.1.5.1 Monocalcium phosphate extractable S (Ensminger, 1954)
 2.1.5.2 Turbidimetric method (Massoumi and Cornfield, 1963)
 2.1.5.3 Ammonium acetate–acetic acid extractable S
2.1.5.4 Colorimetric method for determination of available sulphur using Barium Chromate (Palaskar et al., 1981)

2.1.5.5 Determination of exchangeable calcium and magnesium

2.1.6 Determination of exchangeable sodium

2.1.7 Determination of Available Iron, Manganese, Copper, Zinc (DTPA extractable) by Atomic Absorption Spectrophotometer

2.1.8 Determination of available zinc

2.1.8.1 Ammonium acetate dithizone extraction method

2.1.9 Determination of available manganese

2.1.10 Determination of available copper

2.1.11 Determination of available iron

2.1.11.1 Colorimetric extraction method

2.1.12 Determination of available molybdenum

2.1.13 Determination of available boron75

2.1.13.1 Curcumin method

Chapter 3: Testing for Edaphic Chemical Properties 80–108

3.1 Soil texture

3.1.1 Determination of texture

3.1.1.1 Hydrometer meter

3.1.1.2 International pipette method

3.2 Determination of bulk density of soil
3.2.1 Core sampler technique
3.2.2 Sand pouring technique
3.2.3 Paraffin cold technique

3.3 Determination of Soil Reaction (pH)
3.3.1 Colorimetric method
3.3.2 Potentiometric method

3.4 Determination of electrical conductivity

3.5 Determination of cation exchange capacity

3.6 Determination of calcium carbonate
3.6.1 Rapid titration method

3.7 Determination of lime requirement of soil
3.7.1 Shoemaker et al. method

3.8 Determination of gypsum requirement of soil

Chapter 4: Plant Analysis 109–133

4.1 Analysis of plant tissue

4.2 Nitrogen

4.3 Dry ashing

4.4 Wet ashing

4.5 Determination of phosphorus
4.5.1 Vanadomolybdate method

4.6 Determination of potassium

4.7 Determination of calcium and magnesium

4.8 Determination of micronutrient cations (Zn, Mn, Cu and Fe)

4.9 Determination of boron
4.10 Determination of molybdenum
4.11 Interpretation of plant analysis of data

Chapter 5: Advance Methods of Soil and Plant Analysis 133–143

5.1 Plasma atomic emission spectrophotometer
5.2 Nitrogen analyzer as a tool for nitrogen estimation (ICAP-AES)

Chapter 6: Analysis of Irrigation Water 144–165

6.1 Analysis of irrigation water
 6.1.1 Collection of water samples
 6.1.1.1 Sampling of water

6.2 Analysis of waters
 6.2.1 pH
 6.2.2 Total soluble solids
 6.2.2.1 Gravimetric method
 6.2.3 Electrical conductivity
 6.2.4 Carbonates and bicarbonates
 6.2.5 Chloride
 6.2.6 Sulphate
 6.2.7 Boron
 6.2.8 Nitrate-nitrogen
 6.2.9 Calcium and magnesium
 6.2.9.1 Calcium
 6.2.9.2 Magnesium
 6.2.10 Sodium and potassium
 6.2.10.1 Potassium
6.2.11 Residual sodium carbonate (RSC)
6.2.12 Biochemical oxygen demand (BOD)
6.2.13 Chemical oxygen demand (COD)

Chapter 7: Laboratory Facilities 166–174
7.1 Laboratory equipments
7.2 Glassware and plasticware
7.3 Chemical and solutions

Appendices 175–186
References 187–191
Index 193–196
1.1 Definition

Soil is the storehouse for providing nutrients to the crops plants. The amount and kind of nutrients required for a particular crop vary from soil to soil and even from field to field on apparently the same type of soil. The extent to which a soil can supply nutrients to a crop grown decides the amount of fertilizers needed to compensate the deficiency. The nutrients requirement of a crop can only be estimated by soil testing. The use of fertilizers and amendments without testing the soil is like taking medicine without consulting physician. The soil testing thus may be defined as rapid, chemical and other test made on a soil for assessing the status of available nutrients and other edaphic properties having direct bearing on its management and to find out what and how much is needed.